Lightning AI YouTube subscribers count by month

month subscriber count videos count views count
February 2024 9660 336 597770
March 2024 9910 (+3%) 332 1729631
April 2024 10200 (+3%) 332 1817253
May 2024 10400 (+2%) 332 1833025
June 2024 10600 (+2%) 332 1845346
July 2024 10800 (+2%) 337 1856251
August 2024 10900 (+1%) 340 1868835
September 2024 11000 (+1%) 342 1876426
October 2024 11200 (+2%) 348 1888252
November 2024 11200 349 1893316

Lightning AI videos published by month

month published title ID
Mar. 2020 Run PyTorch on TPU and GPU without changing code neuNEcN9FK4
Apr. 2020 Efficient PyTorch debugging with PyTorch Lightning BoiqJSAgPsQ
May. 2020 Converting from PyTorch to PyTorch Lightning QHww1JH7IDU
Jun. 2020 Overfitting test for deep learning in PyTorch Lightning 7775X23kGhg
Aug. 2020 Episode 3: From PyTorch to PyTorch Lightning DbESHcCoWbM
Aug. 2020 Episode 1: Training a classification model on MNIST with PyTorch OMDn66kM9Qc
Aug. 2020 Karpathy's minGPT trained with PyTorch Lightning 2aJFRQ-v6K8
Aug. 2020 Lightning Data Modules L---MBeSXFw
Aug. 2020 SimCLR - Evaluation Protocol xNPqjL_aJ8s
Aug. 2020 SimCLR Implementation- Online fine-tuning SgiZO4IRz4U
Aug. 2020 SimCLR - Implementation in PyTorch / PyTorch Lightning p8QFB1CiAoQ
Aug. 2020 SimCLR - Projection Head tnktBNn7ygQ
Aug. 2020 SimCLR implementation- NT-Xnet Loss _1eKr4rbgRI
Aug. 2020 SimCLR Implementation - Projection Head -brxmoHvJBE
Aug. 2020 SimCLR Data Augmentation Pipeline Mrp2ntS2QxI
Aug. 2020 SimCLR - Training without finetuning X1Q7avXUILE
Aug. 2020 SimCLR - Global batch-normalization 4wddWrTlLsw
Aug. 2020 SimCLR paper overview a7-qwwAFs_s
Aug. 2020 SimCLR with PyTorch Lightning- intro pDJx8i3jenA
Aug. 2020 Self Supervised Learning uX1TT10NpBI
Aug. 2020 SimCLR Training Hyper Parameters OG__SUjIiDk
Aug. 2020 SimCLR - Tensorboard Visualization with PyTorch Lightning hJP_DgZupnQ
Sep. 2020 Episode 2: PyTorch Dropout, Batch size and interactive debugging vD5iQkdqMqU
Oct. 2020 How to convert from PyTorch into PyTorch Lightning grbaIxHyQsI
Oct. 2020 Training on multiple GPUs and multi-node training with PyTorch DistributedDataParallel a6_pY9WwqdQ
Oct. 2020 Training on TPUs Pl6tzT7Fn4s
Oct. 2020 3 lines of code conversational AI with NVIDIA NeMo and PyTorch Lightning 0XbX5QCRKFs
Oct. 2020 Mixed Precision Training RJO05tlGQAI
Oct. 2020 Debugging Lightning Flags 8q4ieMG1QKU
Nov. 2020 Accumulating Gradients pk1l3pWhFSM
Nov. 2020 Exploding And Vanishing Gradients YZ-vJ2phDCo
Nov. 2020 SwAV Loss Deep Dive M_DgS3XGeJc
Nov. 2020 SwAV PyTorch Lightning Implementation 5irer8A2HoY
Nov. 2020 Self-Supervised Learning of Image Features with SwAV (with author Mathilde Caron) 7QmsTleiRLs
Nov. 2020 Episode 4: Implementing a PyTorch Trainer: PyTorch Lightning Trainer and callbacks under-the-hood tgp56S2eGFE
Dec. 2020 Converting from pytorch to pytorch lightning in 4 minutes uHMG2XngNYQ
Dec. 2020 [Virtual Community Meetup] December Lightning Talks MjURy6Ow5D8
Dec. 2020 Sharded Training WLGM08Xd51k
Jan. 2021 Self-Supervised Learning for Object Detection Q4K7njQJKM8
Jan. 2021 Training SimCLR and SwAV on Imagenet bG-fU5gKYAg
Jan. 2021 Lightning Chat with NeMo's Research Scientist _QksvmLKvks
Jan. 2021 Creating a Training Pipeline with PyTorch Lightning and Hydra w10WrRA-6uI
Jan. 2021 Lightning Chat: How a Grandmaster Won a Kaggle Competition Using Pytorch Lightning 0HQCK_l-njI
Jan. 2021 Event-Based Monocular Human Pose Estimation nIS7aZyCj0U
Mar. 2021 PyTorch Lightning Community Talks - Episode 1 WUb0pVJy7iQ
Mar. 2021 PyTorch Lightning Community Talks - Episode 2 p3cARpnelqE
Mar. 2021 PyTorch Lightning Community Talks - Episode 3 owZzNZjdpU8
Mar. 2021 PyTorch Lightning Community Talks - Episode 4 MNZcoCR05dk
Apr. 2021 PyTorch Lightning Community Talks - Episode 5 svtgCFxE15Y
Apr. 2021 NVIDIA GTC '21: Half The Memory with Zero Code Changes: Sharded Training with Pytorch Lightning w_CKzh5C1K4
May. 2021 Grid AI in 3 minutes - Run pytorch, tensorflow, lightning, keras on cloud GPUs and CPUs Wm1jjaQzPf0
May. 2021 PyConIL 2021 - From Research to Production, Minus the Boilerplate GMRGTmQHzhA
May. 2021 Webinar 4/13/21 - Latest Innovations with PyTorch Lightning cFPeVsJLEeU
May. 2021 Lightning Community Talks Ep 6 Modeling Deep Learning Models for Tabular Data with PyTorch Lightning CjU3VxoKjHY
May. 2021 PyTorch Lightning Training Intro gUF6WUq0Cf4
May. 2021 Controlling Lightning Training and Eval Loops d1zBG_IVKAo
May. 2021 Lightning Weights Summary F860p-oUs0w
May. 2021 Lightning Profiler firBMhnBI-Y
May. 2021 PyTorch Lightning - Reload DataLoaders Every Epoch IdcO1CXbNx4
May. 2021 PyTorch Lightning Callbacks YzqjvW8-bKk
May. 2021 Lightning Early Stopping vfB5Ax6ekHo
May. 2021 PyTorch Lightning - Automatic Learning Rate Finder cLZv0eZQSIE
May. 2021 PyTorch Lightning - Automatic Batch Size Finder KlK7VVdzsSI
Jun. 2021 PyTorch Lightning - Accelerator 55fHcXNBkEY
Jun. 2021 PyTorch Lightning - Accumulate Grad Batches c-7TM6pre8o
Jun. 2021 PyTorch Lightning - amp backend fq7gAacJirQ
Jun. 2021 PyTorch Lightning - Finding the best learning rate for your model WMp-Fu2mlj8
Jun. 2021 Lightning Community Talks - Episode 8 AfTLsjvgo-M
Jun. 2021 PyTorch Lightning - Configuring Averaged Mixed Precision Qtha1Pny44U
Jun. 2021 PyTorch Lightning - Auto select GPUs 38hgdpuziMk
Jun. 2021 PyTorch Lightning - Speed up model training with benchmark OI3Pt1NBzJM
Jun. 2021 PyTorch Lightning - Ensure reproducibility with deterministic = True _GHh_PZGTH4
Jul. 2021 PyTorch Lightning - Check val split every n epochs 2MJGwcXDBb4
Jul. 2021 PyTorch Lightning - Debugging with fast dev run GrsUSONYShA
Jul. 2021 PyTorch Lightning - flush logs every n steps bY3KkP6HbiI
Jul. 2021 PyTorch Lightning - Configuring Multiple GPUs h27whj6W1pM
Jul. 2021 PyTorch Lightning - Managing Exploding Gradients with Gradient Clipping 9rZ4dUMwB2g
Jul. 2021 PyTorch Lightning - Understanding Precision Training d-2EHvJX03Y
Jul. 2021 PyTorch Lightning - Sanity Checking Your Auto With Overfit Batches RxvsvXTQstw
Aug. 2021 PyTorch Lightning - Smoother Notebook Training With Progress Bar Refresh Rate -XakoRiMYCg
Aug. 2021 PyTorch Lightning - Customizing a Distributed Data Parallel (DDP) Sampler mIyy0YVA2-k
Aug. 2021 PyTorch Lightning - Simple Truncated Back Propagation Through Time bYi8gDGCyvg
Aug. 2021 PyTorch Lightning - Identifying Vanishing and Exploding Gradients with Track Grad Norm c8A1f_9hYOg
Aug. 2021 PyTorch Lightning - Training with TPUs eBZciVDr21o
Aug. 2021 PyTorch Lightning - sync batchnorm C-5TsrRCcMI
Aug. 2021 PyTorch Lightning - val check interval oUJsT-WSsM4
Sep. 2021 PyTorch Lightning - process position z-vAn8BLIcY
Sep. 2021 PyTorch Lightning - prepare data per node ij9z3ob0KSk
Sep. 2021 PyTorch Lightning - num sanity val steps gPD2AXbSuks
Sep. 2021 PyTorch Lightning - min max epochs GVCvr0b2MVM
Sep. 2021 PyTorch Lightning - min max steps ffSU69irIuQ
Oct. 2021 PyTorch Lightning - limit batches 2ODZEOvRPUs
Oct. 2021 PyTorch Lightning - auto scale batch size HkKyLE1IBFM
Dec. 2021 Contributor Meetup: PyTorch Lightning Flash - Your PyTorch AI Factory 8OQlBBMVEGU
Jan. 2022 Twitch Live Coding - Make Your First Contribution to PyTorch Lightning vhmeebXjuF8
Jan. 2022 Twitch Live Coding - Learn How The PyTorch Lightning CI Works fjjiT4hzQEw
Feb. 2022 PyTorch Lightning - Fault Tolerant Dive In -HRh_szyuhE
Feb. 2022 Twitch Live Coding - Learn How to Make your First Lightning Flash Contribution nHyC8hwngEI
Feb. 2022 Twitch Live Coding - Lightning Code Base Hardcore Deep Dive aEeh9ucKUkU
Mar. 2022 Twitch Live Coding: Deep Dive into a Single Example Code Flow NEpRYqdsm54
Mar. 2022 Twitch Live Coding - Part 3 Lightning Codebase Deep Dive x4d4RDNJaZk
Apr. 2022 PyTorch Lightning Live: Session 1 - Upgrade your Code to v1.6 Tblw9UGmMjg
Apr. 2022 PyTorch Lightning Live: Session 2 - The Benefits of Bagua bHxwtJZX7Vc
Apr. 2022 PyTorch Lightning Live: Session 3 - Fault tolerance aUtn7H1jYl4
Apr. 2022 PyTorch Lightning Session 4 - Supercharge Your Training With The Habana Accelerator BQJTfOhxeIc
May. 2022 PyTorch Lightning Live: Session 5 - Highlights of PyTorch Lightning v1.6 | Additional features TDAP5wYQk4s
May. 2022 Essential Beginner Computer Science Skills in 10 Mins or Less -c55LCTdD90
May. 2022 The 8 Essential Terminal Commands you Need to Know | Ep 2 KhQKqaxU7BQ
May. 2022 Jupyter notebooks vs Python projects: Learn when when to use which | Ep 1 JGnoTN1OnWY
May. 2022 How to Use Virtual Environments to Keep Your Computer Organized | Ep 3 WHWsABk4Ejk
Jun. 2022 How to Be More Productive Using Python Integrated Development Environments (IDEs) | Ep 4 ISGNh4B1Z74
Jun. 2022 How to Debug Python Code -- Find Errors More Efficiently | Ep 5 mD-1OZvuVDU
Jun. 2022 Lightning DevCon Keynote Livestream 58qpOxKRzqY
Jun. 2022 Devcon Livestream DQZ3_XhdesA
Jun. 2022 Lightning AI: Build end-to-end ML systems with plain python vFwHl7W5ooE
Jun. 2022 Version Control Your Code Using Git ... And Thank Yourself Later | Ep 6 mndB6zHmU3k
Jun. 2022 Managing Code Projects with Git Branching | Ep 7 tzJDZY1x31I
Jul. 2022 Creating a Pull Request on GitHub | Ep 8 _0X_dljzr5E
Jul. 2022 Collaborate on Coding Projects with GitHub | Ep 9 7wb2wUMrkkE
Jul. 2022 Level-Up Your Python Skills Using Classes and Object-Oriented Programming Concepts | Ep 10 rf8da4pVLwY
Aug. 2022 Build an Interactive Research Poster with Lightning AI RbU0CROL8TM
Oct. 2022 Build an Intelligent App In Weeks, Not Months | Lightning AI CWfmJlkfST4
Oct. 2022 Hacktoberfest 2022 with Lightning AI TbjZ8z51QnQ
Oct. 2022 Build Tailored Machine Learning Applications BcCjJZCud5w
Oct. 2022 Stable Diffusion Explained and Demystified with Daniela Dapena - Lightning AI AQrMWH8aC0Q
Oct. 2022 How to Deploy Diffusion Models JV4Yb-IIEcI
Nov. 2022 Run your own stable diffusion (2.0) server in 5 minutes. Xb7ucqIjjE4
Dec. 2022 Deep Learning Fundamentals with Sebastian Raschka - A New Educational Course from Lightning AI eggx0GrdYbM
Jan. 2023 The AI Buzz, Episode #1: ChatGPT, Transformers and Attention 8_eJCCgfDbE
Jan. 2023 How To Scale Model Serving in Production 69PJaWhJsXE
Feb. 2023 Building ML Pipelines Like Legos with Scikit-Learn and Lightning AI 4iLUKE3TazY
Feb. 2023 Boltus: God of AI | Episode 4 Bax4n2xXB8w
Feb. 2023 Boltus: God of AI | Episode 3 3tsjTiUFNQc
Feb. 2023 Boltus: God of AI | Episode 2 vWJMqCgTkUk
Feb. 2023 Boltus: God of AI | Episode 1 kpE6Q0cdp3c
Feb. 2023 Boltus: God of AI | Ep 2 #shorts HAUZD3kk3l0
Feb. 2023 Boltus: God of AI | Ep 1 #shorts M_R99LXPnFU
Feb. 2023 Boltus: God of AI | Ep 3 #shorts hR_0SLd7O8U
Feb. 2023 Boltus: God of AI | Ep 4 #shorts f-NDJ42UQAU
Mar. 2023 The AI Buzz | GPT4, AI Transforming Business, the Future of Applications | S2, E1 YxxPrbumc8s
Apr. 2023 PyTorch Unleashed: Tips for Lightning Fast LLMs with Taylor Robie qRZrVNNe3gQ
May. 2023 Building Generative Interfaces jIHDQNWoMjA
May. 2023 The AI Buzz | Opensource Licensing for LLMs | S2, E2 LXjddn2AvPA
May. 2023 Fireside Chat: LLaMA Adapter XVH6arAHfIU
Jun. 2023 Lightning AI & Stability AI Event - #Keep AI Open Source dEmK-2K4Zhc
Jul. 2023 Unit 4.3 | Training a Multilayer Perceptron in PyTorch | Part 3 1LGkjcAtt8E
Jul. 2023 Unit 4.4 | Defining Efficient Data Loaders | Part 3 | Coding DBWjUvC6xrw
Jul. 2023 Unit 4.2 | Multilayer Neural Networks | Part 2 | The Multilayer Perceptron Architecture RLZBTP4tSSc
Jul. 2023 Unit 4.3 | Training a Multilayer Perceptron in PyTorch | Part 1 XNi5TPSxmZA
Jul. 2023 Unit 4.1 | Logistic Regression for Multiple Classes | Part 2 | The Softmax Activation Function ZVN5jHSfoKA
Jul. 2023 Unit 4.4 | Defining Efficient Data Loaders | Part 2 | Datasets and Dataloaders qQYt36NnTIw
Jul. 2023 Unit 4.3 | Training a Multilayer Perceptron in PyTorch | Part 4 OzQ6jo54rtM
Jul. 2023 Unit 4.3 | Training a Multilayer Perceptron in PyTorch | Part 5 jrPTiNgHj5s
Jul. 2023 Unit 4.2 | Multilayer Neural Networks | Part 3 | Basic Architecture Design Considerations _5BZBQw7_6I
Jul. 2023 Unit 4.2 | Multilayer Neural Networks | Part 1 | Looking Beyond Linear Decision Boundaries Rp88kkUquYM
Jul. 2023 Unit 4.1 | Logistic Regression for Multiple Classes | Part 4 | Cross Entropy Loss Function sfAYY6OQCRk
Jul. 2023 Unit 4.6 | Speeding Up Model Training Using GPUs Xm4nIYbWpnw
Jul. 2023 Unit 4.1 | Logistic Regression for Multiple Classes | Part 5 | The Cross Entropy Loss Function hFwEoYXnnoQ
Jul. 2023 Unit 4.4 | Defining Efficient Data Loaders | Part 1 | Avoiding Data Loading Bottlenecks g-OtQSXohhE
Jul. 2023 Unit 4.4 | Defining Efficient Data Loaders | Part 4 | Coding juLbO2p2Mzc
Jul. 2023 Unit 5.2 | Training a Multilayer Perceptron in PyTorch Lightning | Part 1 DxALtmlxQ4U
Jul. 2023 Unit 6.6 | Improving Convergence with Batch Normalization | Part 2 | Using BatchNorm in PyTorch hQcLc2DjKk0
Jul. 2023 Unit 5.4 | Making Code Reproducible | Part 3 | Coding nDsh2uw89M8
Jul. 2023 Unit 5.1 | Getting Started with Structuring Your PyTorch Code using Lightning D1aYLlbfC14
Jul. 2023 Unit 7.1 | Working with Images | Part 2 | Image Data and Its Challenges fRRq_oLo0N4
Jul. 2023 Unit 6.2 | Learning Rates and Learning Rate Schedulers | Part 1 | Finding a Good Learning Rate VynjEl-4MYM
Jul. 2023 Unit 6.2 | Learning Rates and Learning Rate Schedulers | Part 2 xKXG0t0_wSo
Jul. 2023 Unit 5.5 | Organizing Your Data Loaders with Data Modules | Part 2 kLiVdwPMqHk
Jul. 2023 Unit 6.7 | Reducing Overfitting with Dropout | Part 2 | Applying Dropout During Inference 7_KPDZQfRhs
Jul. 2023 Unit 5.5 | Organizing Your Data Loaders with Data Modules | Part 1 ejXYUte4q3U
Jul. 2023 Unit 6.2 | Learning Rates and Learning Rate Schedulers | Part 5 WgwBRqhdIrQ
Jul. 2023 Unit 6.8 | Debugging Deep Neural Networks | Part 3 Xt2d9JEzVBE
Jul. 2023 Unit 5.3 | Computing Metrics Efficiently with TorchMetrics | Part 1 | How Does TorchMetrics Work? X5qba7W-liw
Jul. 2023 Unit 5.3 | Computing Metrics Efficiently with TorchMetrics | Part 3 QSLoBmYSytY
Jul. 2023 Unit 7 | Getting Started with Computer Vision H8mCQMtFv_0
Jul. 2023 Unit 6.3 | Using More Advanced Optimization Algorithms | Part 1 | Using Momentum to Nudge SGD p_0aZx1wZWU
Jul. 2023 Unit 6.2 | Learning Rates and Learning Rate Schedulers | Part 3 WXK7JBf0pso
Jul. 2023 Unit 6.1 | Model Checkpointing and Early Stopping | Part 1 9Vc7tTWZark
Jul. 2023 Unit 5.7 | Evaluating and Using Models on New Data | Part 1 | Fundamental Model Inspection Steps HXO2YwMhhOQ
Jul. 2023 Unit 5.6 | The Benefits of Logging | Part 2 | Coding uZnbgG6KvZQ
Jul. 2023 Unit 5.6 | The Benefits of Logging | Part 1 | Tracking Training Progress d9mQRKLTV5o
Jul. 2023 Unit 4.5 | Multilayer Neural Networks for Regression | Part 2 | Coding vlU812sgNmA
Jul. 2023 Unit 6.4 | Choosing Activation Functions 8wjiF2au9nk
Jul. 2023 Unit 6.8 | Debugging Deep Neural Networks | Part 2 OhoOILdrNEI
Jul. 2023 Unit 6.8 | Debugging Deep Neural Networks | Part 1 Dgrb9jfFuck
Jul. 2023 Unit 5.2 | Training a Multilayer Perceptron in PyTorch Lightning | Part 2 Y11-leJtC1k
Jul. 2023 Unit 5.4 | Making Code Reproducible | Part 2 | Controlling Sources of Randomness 5yo58Z9zUl0
Jul. 2023 Unit 5 | Organizing Your PyTorch Code with Lightning x4UvpMsyG8M
Jul. 2023 Unit 5.7 | Evaluating and Using Models on New Data | Part 2 9oTXQEco69g
Jul. 2023 Unit 7.2 | How Convolutional Networks Work | Part 2 | Convolutional Layers DH6L-gU3ZI4
Jul. 2023 Unit 5.3 | Computing Metrics Efficiently with TorchMetrics | Part 2 ijOa3vxY2lI
Jul. 2023 Unit 8.3 | Introduction to Recurrent Neural Networks | Part 4 | Embedding Layers in PyTorch YJdO7er_8k8
Jul. 2023 Unit 7.3 | Convolutional Neural Network Architectures | Part 2 | CNNs and Their Inception(s) 5sdnqI_gc3w
Jul. 2023 Unit 8.5 | Understanding Self-Attention | Part 1 | A Basic Attention Mechanism 6JZoX4nbkrQ
Jul. 2023 Unit 8.4 | From RNNs to the Transformer Architecture | Part 1 | Introducing Transformers 3ynQmZwFea4
Jul. 2023 Unit 7.6 | Leveraging Pretrained Models with Transfer Learning | Part 2 aonvyGU94JE
Jul. 2023 Unit 7.2 | How Convolutional Networks Work | Part 4 | What are Pooling Layers? MtonqE5-FMo
Jul. 2023 Unit 8.5 | Understanding Self-Attention | Part 2 | Self-Attention with Learnable Weights EuJ7gTMoskQ
Jul. 2023 Unit 7.7 | Using Unlabeled Data with Self-Supervised Learning | Part 4 f2liRhsiaOw
Jul. 2023 Unit 7.5 | Data Augmentation | Part 2 | Implementing Data Augmentations in PyTorch DY905WdWv_M
Jul. 2023 Unit 8.1 | Working with Text Data | Part 1 | Text Modeling Considerations TeOX4UVL9DQ
Jul. 2023 Unit 7.4 | Training CNNs | Part 1 | An MLP Baseline VghIoU1uA1Q
Jul. 2023 Unit 7.7 | Using Unlabeled Data with Self-Supervised Learning | Part 5 xZ8K_nVA5Mg
Jul. 2023 Unit 7.7 | Using Unlabeled Data with Self-Supervised Learning | Part 1 vFREtWTIkXA
Jul. 2023 Unit 8.2 | Training a Bag-of-Words Based Classifier | Part 2 uEZMhR6we_I
Jul. 2023 Unit 7.6 | Leveraging Pretrained Models with Transfer Learning | Part 1 EwvbdSM1CNQ
Jul. 2023 Unit 8.3 | Introduction to Recurrent Neural Networks | Part 3 | Encoding Inputs w/ Embedding Layers MuBuHLIK8hE
Jul. 2023 Unit 8.3 | Introduction to Recurrent Neural Networks | Part 1 | Modeling Sequence Data gkXxnHzFt0Q
Jul. 2023 Unit 8.2 | Training a Bag-of-Words Based Classifier | Part 1 WqpBCmyKmXE
Jul. 2023 Unit 7.6 | Leveraging Pretrained Models with Transfer Learning | Part 3 uflSD_SDNsk
Jul. 2023 Unit 7.7 | Using Unlabeled Data with Self-Supervised Learning | Part 3 | SimCLR RRKNSSfqb1Y
Jul. 2023 Unit 7.5 | Data Augmentation | Part 1 | Concepts and Examples V5bRNVj5Ywo
Jul. 2023 Unit 7.3 | Convolutional Neural Network Architectures | Part 1 | The Main Ideas jjjrl6FCL7E
Jul. 2023 Unit 7.4 | Training CNNs | Part 4 | Training a ResNet on CIFAR AkZc3but4jA
Jul. 2023 Unit 8.4 | From RNNs to the Transformer Architecture | Part 2 | Why Do We Need Attention? vRt9NFaRz_8
Jul. 2023 Unit 7.4 | Training CNNs | Part 5 | Loading a ResNet from Torchvision Hub QQcDWiV59aU
Jul. 2023 Unit 7.7 | Using Unlabeled Data with Self-Supervised Learning | Part 2 9w-9Sgs_8YQ
Jul. 2023 Unit 8.3 | Introduction to Recurrent Neural Networks | Part 2 | Different Sequence Modeling Tasks biBeJMwPnYM
Jul. 2023 Unit 9.5 | Increasing Batch Sizes to Increase Throughput | Part 2 | Code Demo -50SEU-j6uI
Jul. 2023 Unit 10.1 | Trustworthy and Reliable Machine Learning | Part 1 | Important ML Considerations -d5sGU5jYU0
Jul. 2023 Unit 10.3 | Designing Machine Learning Systems JF0beAHXo0o
Jul. 2023 Unit 9.5 | Increasing Batch Sizes to Increase Throughput | Part 1 | Are Large Batch Sizes Better? Rlebpaz4SNs
Jul. 2023 Unit 9.3 | Deep Dive into Data Parallelism | Part 2 | Distributed Data Parallelism RltaQ-HxqKE
Jul. 2023 Unit 9.3 | Deep Dive into Data Parallelism | Part 3 | Multi-GPU Hands-On Code Demo UryUT5LypRc
Jul. 2023 Unit 9.2 | Multi-GPU Training Strategies | Part 2 | Choosing a Multi-GPU Strategy eEKXC2Oti8A
Jul. 2023 Unit 1.1 | What is Machine Learning? | Part 2 | How does it relate to deep learning? GRwA34olQDU
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 2 | Making Predictions mSOcAugf6aI
Jul. 2023 Unit 1.2 | How Can We Use Machine Learning? | Part 1 | Common Application Areas CGKnJwE8vB0
Jul. 2023 Unit 10.4 | Deep Learning Fundamentals Conclusion XvP5hVK9E0I
Jul. 2023 Unit 8.5 | Understanding Self-Attention | Part 4 | Masked Attention and Positional Encoding 5JfnnzUfqg8
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 1 | Defining the Prediction Task JUI9Gz_VzEo
Jul. 2023 Unit 9.2 | Multi-GPU Training Strategies | Part 1 | Introduction to Multi-GPU Training NmoDg5PPDQY
Jul. 2023 Unit 8.6 | Large Language Models | Part 1 | The Two Main Ingredients VGMQcFB5YX4
Jul. 2023 Unit 9 | Techniques for Speeding Up Model Training uqYrVdlXkz8
Jul. 2023 Unit 10.1 | Trustworthy and Reliable Machine Learning | Part 2 | Constructing Confidence Intervals eqf6-WGpgx8
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 3 | The Training Process qiKfvE1VUu0
Jul. 2023 Unit 9.4 | Compiling PyTorch Models | Part 2 | Code Demo 6jjaLlgSYJg
Jul. 2023 Unit 8.7 | A Large Language Model for Classification | Part 1 | Bidirectional Pertaining with BERT Sd_q_2pTuP4
Jul. 2023 Unit 1.2 | How Can We Use Machine Learning? | Part 2 | The Three Classic Categories ltCYDQGwIP4
Jul. 2023 Unit 9.3 | Deep Dive into Data Parallelism | Part 1 | Understanding Data Parallelism MNdRsINYtRE
Jul. 2023 Unit 10.2 | Fabric - Scaling PyTorch Models without Boilerplate Code | Part 1 4ZH5ey6r7F0
Jul. 2023 Unit 9.4 | Compiling PyTorch Models | Part 1 | Understanding Static and Dynamic Graphs 6ZElb2W_i5Y
Jul. 2023 Unit 9.1 | Accelerated Model Training via Mixed-Precision Training | Part 1 3SK_tFAcUP8
Jul. 2023 Unit 8.7 | A Large Language Model for Classification | Part 3 H4s9nToUGkw
Jul. 2023 Unit 3.5 | The PyTorch API | Part 1 | Model Training -C0fAxFj67M
Jul. 2023 Unit 2.4 | Improving Code Efficiency with Linear Algebra | Part 2 | Matrix Multiplications bc5IpN6bCjU
Jul. 2023 Unit 3.5 | The PyTorch API | Part 2 | Neural Network Layers 4SOokqvnJjc
Jul. 2023 Unit 3.3 | Model Training with Stochastic Gradient Descent | Part 4 Zp60oKbR1UY
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 4 | Perceptron Training by Example nlIpS3NLWgc
Jul. 2023 Unit 3.6 | Training a Logistic Regression Model in PyTorch | Part 1 5XL-FdlsRqg
Jul. 2023 Unit 2.6 | Revisitng Perceptron Tensors 7jQu4q6MYNU
Jul. 2023 Unit 2.1 | Introducing PyTorch 9V1-G9bA4Dw
Jul. 2023 Unit 3 | Model Training in PyTorch -tkVHRCEjlc
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 5 | Weight Updates 1J_P8NLvnIA
Jul. 2023 Unit 2.5 | Debugging Code Iq_jr8Q8iz8
Jul. 2023 Unit 3.1 | Using Logistic Regression for Classification | Part 1 | Single Layer Neural Networks URK12kJCJSc
Jul. 2023 Unit 1.7 | Evaluating Machine Learning Models | Part 2 | Performance Metrics for Model Evaluation haRknoDU90Q
Jul. 2023 Unit 3.3 | Model Training with Stochastic Gradient Descent | Part 1 pKKiX08HLko
Jul. 2023 Unit 1.6 | Perceptron in Python | Part 3| Coding Example YF9p8TKzmRM
Jul. 2023 Unit 1.4 | The First Machine Learning Classifier | Part 6 | Perceptron Decision Boundary pGHwdf54mrY
Jul. 2023 Unit 2.3 | How Do We Use Tensors in PyTorch? 7qtZry76UfY
Jul. 2023 Unit 3.2 | The Logistic Regression Computation Graph zvZ4VqITAOA
Jul. 2023 Unit 2.7 | Seeing Predictive Models as Computation Graphs YjhjEm8DTRM
Jul. 2023 Unit 2 | First Steps with PyTorch: Using Tensors 28M8l9EFJck
Jul. 2023 Unit 3.3 | Model Training with Stochastic Gradient Descent | Part 2 3VL_k7RJ0nQ
Jul. 2023 Unit 3.1 | Using Logistic Regression for Classification | Part 2 | Logistic Sigmoid Function JvoHfm-WkV8
Jul. 2023 Unit 1.7 | Evaluating Machine Learning Models | Part 1 | Using Validation Sets PmKGsTGz_UQ
Jul. 2023 Unit 10 | The Finale: Our Next Steps After AI Model Training YwxJP7J-Z7A
Jul. 2023 Unit 6.7 | Reducing Overfitting with Dropout | Part 1 | The Main Idea Behind Dropout CbMlFGzpFkQ
Jul. 2023 Truncated Back-propogation Through Time 2K_jUv8aKN4
Jul. 2023 Unit 1.3 | A Typical Machine Learning Workflow cIt04Sh0oyg
Jul. 2023 Unit 8 | Introduction to Natural Language Processing and Large Language Models RAS7DgGYZvU
Jul. 2023 Unit 2.4 | Improving Code Efficiency with Linear Algebra | Part 1 | From For-Loops to Dot Products DKYIjPVzsoE
Jul. 2023 Unit 7.4 | Training CNNs | Part 3 | Introducing the CIFAR Dataset f2TPkYLsHRk
Jul. 2023 Unit 7.2 | How Convolutional Networks Work | Part 3 | Convolutions with Multiple Channels Xn2sLlFTY5k
Jul. 2023 Unit 6.6 | Improving Convergence with Batch Normalization | Part 1 | Scaling Layer Inputs LvYBg1gBEU4
Jul. 2023 Unit 6.2 | Learning Rates and Learning Rate Schedulers | Part 4 | Annealing the Learning Rate LVXsXe8IU0Q
Jul. 2023 Unit 8.5 | Understanding Self-Attention | Part 3 | From Self-Attention to Multi-Head Attention EfzWHVbp_m4
Jul. 2023 Unit 6.3 | Using More Advanced Optimization Algorithms | Part 2 | Adaptive Learning Rates zl4NtWG15y8
Jul. 2023 Unit 1.6 | Perceptron in Python | Part 1| Coding Example ftzkrT82tlI
Jul. 2023 Unit 7.2 | How Convolutional Networks Work | Part 5 | Controlling the Output Size with Padding CgUrP8FlHxM
Jul. 2023 Unit 6.7 | Reducing Overfitting with Dropout | Part 3 | Adding Dropout Layers in PyTorch X55e411GmdQ
Jul. 2023 Scaling PyTorch Model Training - Sebastian Raschka at CVPR LCTysvIJGqY
Jul. 2023 Unit 4.3 | Training a Multilayer Perceptron in PyTorch | Part 2 3LzPXjobVdM
Jul. 2023 Unit 5.2 | Training a Multilayer Perceptron in PyTorch Lightning | Part 3 8NKXArrnJlQ
Jul. 2023 Unit 7.3 | Convolutional Neural Network Architectures | Part 3 | Key Architecture Ideas uptFqRFwuTA
Jul. 2023 Unit 1.6 | Perceptron in Python | Part 2| Coding Example IC7iT2gVni4
Jul. 2023 Unit 6.1 | Model Checkpointing and Early Stopping | Part 2 FmzeUcC7bKc
Jul. 2023 Lightning Progress Bar z0sJ6uhITvY
Jul. 2023 Reduce Infrastructure Cost by Moving Beyond MLOps 2q3FhiLjIYk
Jul. 2023 Unit 7.4 | Training CNNs | Part 2 | From MLP to CNN vMhfdudHIN0
Jul. 2023 Unit 8.7 | A Large Language Model for Classification | Part 2 uGTQbCF36uo
Jul. 2023 Unit 4 | Training Multilayer Neural Networks vrAQPyHKFas
Jul. 2023 Unit 7.5 | Data Augmentation | Part 3 | Training a ResNet on Augmented Data eo_wJW6TYNU
Jul. 2023 Unit 8.1 | Working with Text Data | Part 2 | The Bag-of-Words Model obsQ9WCtFx4
Jul. 2023 NVIDIA NeMo rFAX1-4DSr4
Jul. 2023 Unit 7.2 | How Convolutional Networks Work | Part 1 T5ITvjXWhFE
Jul. 2023 Unit 3.6 | Training a Logistic Regression Model in PyTorch | Part 2 MMcOAT3KNgo
Jul. 2023 Unit 6 | Essential Deep Learning Tips & Tricks lTcNNFMXY5Q
Jul. 2023 Unit 3.3 | Model Training with Stochastic Gradient Descent | Part 3 xhp4RkecIH8
Jul. 2023 Unit 4.5 | Multilayer Neural Networks for Regression | Part 1 | Architecture and Loss Function 1WHy50Bt2wg
Jul. 2023 Unit 4.1 | Logistic Regression for Multiple Classes | Part 1 | The Softmax Regression Model cVbbJ2ZNrYw
Jul. 2023 Unit 5.8 | Adding Functionality with Callbacks -7WXeqRBzzQ
Jul. 2023 Unit 3.7 | Feature Normalization | Part 2 | Common Feature Normalization Techniques Mw7wJTHep9c
Jul. 2023 Unit 1.5 | Setting Up Our Computing Environment PQjzAhO__w4
Jul. 2023 Unit 9.1 | Accelerated Model Training via Mixed-Precision Training | Part 2 | Hands-On Code Demo vvxJvSfh8Xg
Jul. 2023 Lightning DevCon Live Stream - internal employees only R4t8ERneNOM
Jul. 2023 Unit 3.7 | Feature Normalization | Part 1 | The Problem with Features on Different Scales eTP3sXLjV5I
Jul. 2023 Unit 3.1 | Using Logistic Regression for Classification | Part 3 | The Logistic Regression Loss Ciyp8aYBsHQ
Jul. 2023 Unit 5.6 | The Benefits of Logging | Part 3 | Coding 8PBSliC9_AU
Jul. 2023 Unit 2.4 | Improving Code Efficiency with Linear Algebra | Part 3 | Multiplying Two Matrices yzsIRbvH804
Jul. 2023 Unit 5.4 | Making Code Reproducible | Part 1 | Sources of Randomness m_s1g41Cj_M
Jul. 2023 Unit 4.1 | Logistic Regression for Multiple Classes | Part 3 | From Softmax Scores to Class Labels nTWS26lQP40
Jul. 2023 Unit 1 | Welcome to Machine Learning and Deep Learning 6Py-tIEiXKw
Jul. 2023 Unit 2.4 | Improving Code Efficiency with Linear Algebra | Part 4 | Unequal Tensor Shapes J0lLeaWSBWM
Jul. 2023 Unit 8.6 | Large Language Models | Part 2 | Generative Pretrained Transformer (GPT) F-9Ekl4v_YU
Jul. 2023 Unit 3.4 | Automatic Differentiation in PyTorch iNcxvqDEEj4
Jul. 2023 Unit 2.2 | What are Tensors? | Part 2 | Tensors and Array Libraries 2XtB7KPjskk
Jul. 2023 Unit 1.1 | What is Machine Learning? | Part 1 | How does it work? y36U3yvKT7A
Jul. 2023 Unit 6.1 | Model Checkpointing and Early Stopping | Part 3 FLqHaWgWuiM
Oct. 2023 Unit 2.2 | What are Tensors? | Part 01 | Tensors for Data cwcaTNHgGuM
Jan. 2024 Implementing Your AI Strategy with Lightning Studio | Luca Antiga presentation at AI Summit Dec 2023 5e1UezWwukA
Feb. 2024 AI Regulation: A Fireside Conversation about AI's relationship with Washington DC 1C_mdeD9vE4
Mar. 2024 Meet Studio Templates | Get started today for free with Studio Templates 78aQx7QcryU
Mar. 2024 Meet Studio | Turn ideas into AI, Lightning Fast | from Lightning AI Creators of PyTorch Lightning wYV8rPKTbSc
Jul. 2024 The Thunder Sessions | Session 1 hOeAkbSwMCE
Jul. 2024 The Thunder Sessions | Session 2 8KLL3aCiiWg
Jul. 2024 The Thunder Sesssions | Session 3 | Deep Learning Compilers HtL-T1nw0Rw
Jul. 2024 The Thunder Sessions | Session 2 Od1STXifgjE
Jul. 2024 The Thunder Sessions | Session 4 | Transforms t9Fj5VjIpac
Aug. 2024 The Thunder Sessions | Session 5 | Speedups in Llama 3 0kuy63u1kZ8
Aug. 2024 Meet LitServe - The fast, simple way to deploy AI models _0K3u5dmf9A
Aug. 2024 The Thunder Sessions | Session 6 | More Transforms, Less Theory i79Op6DXI7c
Sep. 2024 The Thunder Sessions | Session 7 | Fusing Kernels with Thunder & Triton DF7_XGUmCD8
Sep. 2024 The Thunder Sessions | Session 8 -p9nlwhqh30
Sep. 2024 The Thunder Sessions | Session 9 | Applying custom kernels and fusions to large models TCvLw_Do2lU
Oct. 2024 The Thunder Sessions | Session 10 | LLL: Liger-Kernel+LitGPT+Llama 3.2 3H_aw6o-d9c
Oct. 2024 Thunder Sessions | Session 11 0zSpp1ZpS34
Oct. 2024 The Thunder Sessions | Session 12 EfNzQKQFcxk

By Matt Makai. 2021-2024.